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The non-linear dynamics of a rigid rotor levitated by active magnetic bearings is
investigated. The vibrations in the horizontal and vertical directions are analyzed on the
center manifold near the double-zero degenerate point by using normal-form method. The
resulting normal forms in the horizontal and vertical directions are di!erent due to the e!ect
of rotor weight. It is shown that the vibratory behavior in the vertical direction can be
reduced on the center manifold to the Bogdanov}Takens form. For the autonomous case,
there exist saddle-node bifurcation and Hopf bifurcation for local analysis, and
a saddle-connection bifurcation for global analysis. For non-autonomous case, the
Melnikov technique is used to determine the critical parameter at which the homoclinic
orbits intersect transversally. For the vibrations in the horizontal direction, the essential
non-linear terms of the truncated normal form are third order. The behaviors of zero
solutions are given. Finally, numerical simulations are performed to verify the analytical
predictions.

( 2000 Academic Press
1. INTRODUCTION

Active magnetic bearings (AMBs) are now being widely used in rotating machinery. Most of
the components of AMBs are non-linear therefore the entire system becomes inherently
non-linear. The non-linear properties of AMBs can lead to a di!erent behavior as predicted
by a linear model. Several works have been done on the non-linear dynamical analysis of
the rotor}AMB system, and many papers on AMB systems have been published on the
bearing design, the bearing locations, the control strategy and the stability analysis. The
non-linear oscillation caused by gyroscopic e!ects is analyzed in reference [1]. It is found
that the system undergoes Hopf bifurcation to unstable periodic motions, and a non-linear
feedback is used to control the Hopf bifurcation. The e!ects of co-ordinate coupling due to
the geometric coupling of the pole arrangement on non-linear behavior are examined in
0022-460X/00/310133#19 $35.00/0 ( 2000 Academic Press
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reference [2]. Multiple coexisting solutions and fractal boundaries are obtained. Stable
quasiperiodic vibration is obtained for large geometic coupling values while neglecting the
rotor weight in reference [3]. The collocation method is used to "nd both stable and
unstable periodic solutions for geometric coupling with the rotor weight considered in
reference [4]. The local stability and bifurcation behavior of the periodic motion are
obtained by using Floquet theory.

It is important to note that, in most previous work, many authors considered their
systems to have been stabilized by feedback control. The values of controller's gains are
assumed to be far from critical. The current control principle is usually used for the sake of
simplicity. In many situations, such an analysis can provide valuable information for
dynamical behavior. However, some important information is lost in those systems under
some special values of controller's gains. If the controller's gains are chosen in the neighbor-
hood of some critical values, the system can exhibit more complicated behavior. Thus, the
main objective of this paper is to provide a deeper insight into the e!ects of the critical
values of controller's gains on the dynamic behavior of a magnetically suspended rotor. It
will be shown that, due to the non-linear characteristics of magnetic forces, this system
exhibits rich dynamics near the double-zero degenerate point and the controller's gains
must be selected carefully.

There has been little research on codimension bifurcation of rotor motion. However,
some applicable research has been conducted in bifurcation analysis for three-dimensional
system. Holmes [5] studied the dynamics of a non-linear oscillator with a simple feedback
system by using central manifold and normal form methods. Ge and Chen [6] analyzed
double degeneracy and chaos in a rate gyro with feedback control. Tseng and Tung [7]
investigated local bifurcations of codimension two for a #exible beam with active non-linear
magnetic force via center manifold theory and the method of normal form theory. The
actual magnetic force was approximated by a Taylor expanding about the equilibrium
point keeping the lowest-order non-linear terms. The e!ects of feedback gains on the
behavior of transverse vibrations of the beam and the region of attraction were obtained.

The present work examines the bifurcation behavior of a rotor}AMB system with critical
feedback gains near the double-zero degenerate point. The voltage control strategy is used
to take account for the e!ect of the inductance of bearing magnet. The normal form method,
center manifold theory, and the Melnikov's technique are used to study local codimension
two bifurcation of rotor motion. Finally, numerical simulations are also presented to verify
the analytical results.

2. EQUATIONS OF MOTION

The rotor}AMB system under consideration is shown in Figure 1. A horizontal, uniform,
symmetric, rigid rotor is suspended by two identical radial AMBs at both ends of the rotor.
Each bearing is composed of four electromagnets, which are radially set opposite in the
horizontal and vertical direction, respectively (see Figure 2). In order to simplify the
analysis, the magnetic #ux leakage, the #ux fringing, the eddy current loss, the saturation of
the core material, and the coupling e!ects between the electromagnets are neglected. The
rotor is considered as a mass with two degrees of freedom. The equations of motion
governing the unbalance response of the rotor can be written as

mxK"F
x
!cxR #meu2 sin ut,

myK"F
y
!cyR #meu2 cosut#mg, (1)



Figure 1. Model of a rigid rotor with active magnetic bearings (A, B) and sensors (C, D).

Figure 2. A simpli"ed diagram for four assembled electromagnets.
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where m, e, c, u are the mass, the eccentricity of unbalance, the damping coe$cient,
and the regular velocity of the rotor respectively. F

x
and F

y
are the total magnetic forces

in the horizontal and vertical directions respectively. Each of these forces is resulted
from the di!erence of attractive forces of the two electromagnets. They take the
forms [8]
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where k
0
, A

a
and N represent the permeability, the projection area of magnetic pole

and the number of coil windings respectively. 2a is the angle between both shoes of
a magnet. C

0
is the air gap. I

0
, i

cx
and i

cy
denote the bias current and the control currents

in the x and y directions respectively. i
cy
"i

0
#i, i

cx
"i, and i

0
denotes the static

component of the current #owing through the coils in the vertically located electro-
magnets. If the rotor is expected to levitate at the geometric center of bearings during
normal operation, the static component of force F

y
must balance the weight of the rotor.
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Thus, the static component of control current i
0

in the vertically located electromagnets
satis"es

F
y
(i
0
, 0)#mg"0,
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4
cos a A

4I
0
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0

C2
0
B . (3)

From equations (1)} (3), it can be seen that the equations of motion and the expressions of
the magnetic forces in both horizontal and vertical directions are similar by setting i

0
"0.

So it is enough to analyze the vibratory behavior in the y direction when the e!ect of cross-
coupling is neglected. The dynamics in the x direction can be easily obtained in the same
way. In subsequent work, the equation of motion in the y direction is studied.

The relationship of the current i and the voltage of the magnetic coil +< is given by [9]

D<"¸

di

dt
#K

v

dy

dt
#iR, (4)

where R, ¸ and K
v

stand for the Ohmic resistance, the inductance and the induced
voltage-velocity coe$cient of the coil, respectively. The input of the system is the actuator
voltage, and the output of the system is the position of the rotor. When PD feedback control
is used, the input of the system +< (voltage control strategy) obeys

D<"K
p
y#K

d

dy

dt
, (5)

where K
p

and K
d

are the proportional and di!erential constants, and in the present
research, the controllers' PD gains for four pole-pairs are taken to be identical.

Introducing non-dimensional parameters w
0
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0
/I

0
, w"i/I

0
and v"y/C

0
, and ex-

panding the magnetic force in a Taylor series about (0, 0) point, one has
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order four and higher.
Substituting equations (6) and (5) into equations (1) and (4) respectively and letting tPrt

and uPu/r, yields the non-dimensional forms
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Letting (v, vR , u)"(x
1
, x

2
, x

3
) and rewriting equations (7) and (8) yields a system of 3 "rst

order equations

xR
1
"x

2
,

xR
2
"a

1
x
1
!dx

2
!ax

3
!3a

2
x2
1
#2a

2
x
1
x
3
#2a

1
x3
1
!3ax2

1
x
3
#ax

1
x2
3
#0(4)#f cosut,

xR
3
"k

1
x
1
#k

2
x
2
!bx

3
. (9)

3. REDUCTION TO THE TRUNCATED NORMAL FORMS

In this section, the normal forms and unfoldings of a codimension-two bifurcation
problem in the neighborhood of the double-zero-degenerate point are investigated. The
corresponding autonomous system of equation (9) (by letting f"0) has a static equilibrium
point (0, 0, 0). The Jacobian matrix of the linear part corresponding to equation (9) takes the
form
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a
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!d !a

k
1

k
2

!b

. (10)

According to the Routh}Hurwitz criterion [10], it is found that

(1) For a
1
b/a(k

1
((db(d#b)!a

1
d)/a#(d#b)k

2
) , k

2
'(1/a) (a

1
!db): all the

eigenvalues have negative parts, which implies the motion of the corresponding
autonomous system of equation (9) is asymptotically stable at the "xed point.
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(4) For k
1
"k

1c
"a

1
b/a, k

2
"k

2c
"(1/a) (a

1
!db): there exist two zero-eigenvalue and

a negative eigenvalue with the value of !(d#b).

Figure 3 demonstrates the stability region of static equilibrium point and a criterion
for the choice of feedback gains. If the controller's gains are selected in the region
between curves &&AB'' and &&AC'', the motion of the linearized autonomous system is
asymptotically stable at the origin. In a practical system, the controller's gains must be
chosen in this region in order to stabilize the system. The other regime is unstable for the
"xed point. There exists a pair of pure imaginary eigenvalues on curve AB and one zero
eigenvalue on curve AC. These two curves are the stability boundary. The Hopf bifurcation
occurs when the controller's parameters pass through curve AB, whereas saddle-node
bifurcation occurs when pass through curve AC. These two cases are called local bifurcation
of codimension one. Curves AB and AC meet at point A, where there is a double-zero
eigenvalue.

In this work, special attention is paid to case (4), where the Jacobian matrix has a double
zero and a negative eigenvalue. It is called codimension-two bifurcation problem. The main
purpose is to "nd the loci in the parametric plane and to observe the qualitative behavior
when the parameters are varied. By the center manifold theory [11], the study of the
dynamics of the three-dimensional system (9) can be reduced to the corresponding



Figure 3. The parametric diagram for selection of controller's gains.
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two-dimensional center manifold which determines the key qualitative dynamical behavior.
To achieve this, introducing small perturbation e

1
and e

2
in the forms
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, (11)

so that the unfolding of the critical system (e
1
"e

2
"0)0) will be included in the

parametrized normal form. The co-ordinate transformation x"¹p yields the standard
form of equation (9),
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where both the non-linear terms and the time-periodic perturbation terms are evaluated at
the critical values, in which p, [J], [J]e , ¹ are given in Appendix A.
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where
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the h.o.t. denotes terms of orders 0( Dp5
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D), 0( De
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D ), and the coe$cients C
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are de"ned in Appendix B. Although the computations of center manifold are con"ned
to the autonomous form, here the excitation terms are treated as a small perturbation and
computed in the same way [6]. In section 4, the e!ect of the excitation will be investigated
by the Melnikov's method to detect the parameter values at which the homoclinic or
heteroclinic orbits intersect transversally.
By using a linear change of co-ordinates
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equation (13) becomes a more convenient form:
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At this stage, the method of normal forms is employed to simplify the reduced system in
which the qualitative dynamics are still captured in the neighborhood of the "xed point. To
achieve this, a near-identity co-ordinate transformation is chosen as

q"u#Poly2(u), (16)

where the simple notation Poly2(u) represents the polynomial terms of order 2. Thus, the
truncated normal form (containing excitation terms) is given by
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Following the procedure outlined above, the truncated normal form for the dynamics in
the x direction can easily be obtained by simply setting a

1
"a, a

2
"0 in equation (15) and

noting the di!erence of excitation terms in equation (1) as follows:

uR
1
"u

2
#f

1
sinut,

uR
2
"k

1
u
1
#k

2
u
2
#a

2
u3
1
#b

2
u2
1
u
2
#f

2
sinut, (19)

where a
2
"C

2
b
111

, b
2
"C

2
b
112

#3C
1
b
111

, f
1
"C

1
f, f

2
"C

2
f. Substituting coe$cients

b
111

and b
112

given in Appendix B into a
2
and b

2
, and recalling the relationship a

1
"a, one

"nds that a
2
vanishes whereas b

2
does not vanish, thus terms of order four and higher can be

neglected.
It is easy to see from equations (18) and (19) that the truncated normal forms for the two

directions are di!erent due to the e!ect of rotor weight. The necessary lowest order
non-linear terms are third order for the horizontal direction and second order for the
vertical direction respectively. The addition of higher order terms in equations (18) and (19)
does not a!ect the qualitative behavior of the truncated system near (0, 0, 0). The dynamical
behavior of the original system can be reduced on the center manifold near the critical
degenerate system. In the subsequent work, the above forms will be used for the purpose of
bifurcation analysis.

4. BIFURCATION OF ROTOR MOTION IN THE VERTICAL DIRECTION

With suitable rescaling to equation (18), the corresponding simple forms can be reduced
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For bifurcation analysis, the corresponding autonomous system of equation (20) has been
studied extensively. The unfolding results of references [11, 12] can be consequently
employed to directly show the dynamical behavior of the full system on the center manifold
near the double-zero-degenerate point.
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4.1. THE QUALITATIVE BEHAVIOR FOR THE AUTONOMOUS CASE

The corresponding autonomous system of equation (20) is obtained by letting
f"0:
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In addition to the saddle-node bifurcation and Hopf bifurcation for local analyses,
a saddle-connection bifurcation for global analysis is expected to occur. To study this,
a rescaling transformation is introduced. Letting u
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By applying the Melnikov technique, the autonomous system has an approximate
homoclinic bifurcation curve by
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Figure 4 shows the bifurcation diagram and its associated phase portraits for system (21).
The associated phase portraits are topologically equivalent to the #ow on the center
manifold.

4.2. THE MELNIKOV ANALYSIS

It has been seen that for the corresponding autonomous system there exists a saddle
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2
*0, for equation (22). If the system has perturbations,

i.e., fO0)0, this system becomes non-autonomous, and the homoclinic orbit may be
broken. By applying Melnikov's technique, one can prove the existence of transverse
homoclinic orbit in the system. Using the rescaling transformation u
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Figure 4. The complete bifurcation sets and its phase portraits of equation (23): &&sn'', saddle-node bifurcation;
&&Hopf ', Hopf bifurcation; &&sc'', saddle connection bifurcation.
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where u"eX. For e"0, equation (25) has a saddle connection orbit given by
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The Melnikov function for the homoclinic orbit (the computation is for &&#'' in equation
(26), while for &&!'' is identical) is given by

M(t
0
)"P

`=

~=

u0
2
(t) [l

2
u0
2
(t)#u0

1
(t)u0

2
(t)#f

2
cos [u(t#t

0
)]] dt. (27)

Substituting equation (26) into equation (27) gives

M(t
0
)"

12J2

35
(7l

2
!5)!

3

2
nu2

1
f
2
cosch

nu
1

2
sin (u

1
t
0
) (28)

where u
1
"J2u. Suppose that M(t

0
) has a simple zero, i.e., there exists a point t

0
"t6

0
such

that

M(tM
0
)"0 and

LM (tM
0
)

Lt
0

O0 (29)



Figure 5. The Melnikov criterion in (u
1
, f

2
) plane. The stable and unstable manifolds of a saddle-type periodic

orbit may intersect transversely in the region above the curve.
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then the stable and unstable perturbed manifolds that are close to homoclinic manifold of
the unperturbed system intersect transversely, and there exist transverse homoclinic orbits
at certain parameter values and some t

0
. It follows from the Melnikov theory that if the

forcing amplitude satis"es

f
2
'

8J2

35
(7l

2
!5)NAnu2

1
cosch

nu
1

2 B , (30)

the manifolds of equation (25) intersect and may give rise to chaotic motions of the
Smale-horseshoe type near the saddle point. Equation (30) is numerically computed at the
speci"c values of controller's gains and system parameters and the result is shown in Figure
5. The stable and unstable manifolds of a saddle-type periodic orbit may intersect
transversely in the region above the curve.

5. DYNAMIC BEHAVIOR IN THE HORIZONTAL DIRECTION

From the analysis in section 3, the reduced equation of motion in the horizontal direction
can be written in the form (by letting a

2
"0 in equation (19))

uR
1
"u

2
#f

1
sinut,

(31)

uR
2
"k

1
u
1
#k

2
u
2
#b

2
u2
1
u
2
#f

2
sinut,
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where

k
1
"!

ae
1

d#b
, k

2
"

a
(d#b)2

e
1
!

a
d#b

e
2
, b

2
"

db
d#b

.

Usually, by using the van der Pol transformation and applying the averaging method [11],
equation (31) can become an averaged system and the bifurcation of "xed points
occurring in the averaged system can be explored near resonance. But for this physical
system, the trivial solution for the corresponding autonomous system of equation (31) is of
signi"cant interest because the rotor is expected to levitate at the center of bearings. It is
easy to see that equilibrium (0, 0) is the only singular point for the corresponding
autonomous system of equation (31). The behavior of zero solution depends on the
eigenvalues of the corresponding linearized equations (31). There are "ve cases to be
considered:

(1) If k
2
(0 and !k2

2
/4(k

1
(0, both eigenvalues are real and negative, therefore (0, 0)

is a stable node.
(2) If k

2
(0 and k

1
(!k2

2
/4, both eigenvalues are complex with negative real parts,

therefore (0, 0) is a stable focus.
(3) If k

2
'0 and k

1
(!k2

2
/4, both eigenvalues are complex with positive real parts,

therefore (0, 0) is an unstable focus.
(4) If k

2
'0 and !k2

2
/4(k

1
(0, both eigenvalues are real and positive, therefore (0, 0)

is an unstable node.
(5) If k

1
'0, one eigenvalue is positive and the other is negative, therefore (0, 0) is

a saddle

Figure 6 shows the types of zero solutions of equation (31) in the (k
1
, k

2
)-space.

Only in quadrant 3 the zero solution is stable, while in the other quadrants the zero
solution is unstable. The higher order terms eliminated in equation (31) do not a!ect the
qualitative behavior of the untruncated system. The dynamics of the original system in the
x direction near the "xed point are qualitatively the same as those of the normal form of
equation (31).
Figure 6. The type of zero solution of equation (33).



Figure 7. The bifurcation set and phase portraits for autonomous system in the vertical direction. (a) The
bifurcation sets in the (e

1
, e

2
) plane for the case e

1
)0)0 and e

2
)0)0. (b) The bifurcation sets for the case e

1
*0)0

and e
2
*0)0 (c) The phase portrait with e

1
"!0)002 and e

2
"!0)022. (d) The phase portrait with e

1
"!0)002

and e
2
"!0)02178. (e) The phase portrait with e

1
"!0)002 and e

2
"!0)02078. (f ) The phase portrait with

e
1
"!0)002 and e

2
"!0)0148.
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Figure 7. Continued.
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6. NUMERICAL SIMULATIONS

In order to verify the above analytical results, the vibratory behavior of the rotor is
examined by numerical simulations for double-zero-degenerate case. Direct numerical



Figure 7. Continued.
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simulations were performed for the original system (9) by the Runge}Kutta algorithm. In
what follows, a"1)0, w

0
"0)1, d"0)01, b"0)1, u"1)0. Figure 7 shows the bifurcation

sets in the original variables (e
1
, e

2
)-space and its phase portraits of unforced system in the

vertical direction. The bifurcation sets are obtained by translating the analytical results of
section 4 back into the original parameter values. Figure 7(a) shows the bifurcation sets for
the case e

1
)0)0 and e

2
)0)0, whereas Figure 7(b) is for the case e

1
*0)0 and e

2
*0)0. The

curves &&sn'' in Figure 7(a) and 7(b) represent saddle-node bifurcations. The system
undergoes a saddle-node bifurcation at e

1
"0)0. There are a saddle and a source in region

1 (as shown in Figure 7(c)). The circle &&s'' represent a saddle. The curve &&Hopf '' represents
the Hopf bifurcation and in region 2 (as shown in Figure 7(d)), there are a saddle, a sink, and
an unstable limit circle. Upon passing through the Hopf bifurcation curve from region 1,
one of the two unstable "xed points becomes stable and an unstable limit circle appears.
The periodic orbit created by the subcritical Hopf bifurcation grows in amplitude as e

2
is

increased (or decreased) for the case e
1
)0)0 and e

2
)0)0 (or e

1
*0)0 and e

2
*0)0) until it
Figure 8. The types of zero solution and partial phase portraits for forced motion in the horizontal direction. (a)
Types of zero solution in the (e

1
, e

2
) plane, (b) stable focus at e

1
"0)03 and e

2
"0)282, (c) unstable focus e

1
"0)005

and e
2
"0)043.
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collides with the saddle point, creating a homoclinic orbit. The curve &&sc'' represents
a saddle connection or a homoclinic bifurcation (as shown in Figure 7(e)). As e

2
is further

increased (or decreased for e
1
*0)0 and e

2
*0)0), the homoclinic orbit breaks. In region

3 (as shown in Figure 7(f )), there are a saddle and a sink. Comparing Figures 4 and 7, it is
easy to see that the dynamics of original system near the degenerate point are qualitatively
the same as those of the truncated normal form. A very good agreement is thus found
between the numerical simulations and the analytical results. Figure 8 shows the type of
zero solution in the original parameters (e

1
, e

2
)-space and phase portraits for unforced

motion in the horizontal direction. Figure 8(b) shows the stable focus associated with region
1, while Figure 8(c) shows the unstable focus corresponding to region 2. A good agreement
is also found between analytical results and numerical simulations with comparison
between Figures 6 and 8. Figure 9 shows stable periodic orbits of the original system (3) for
forced system, which correspond to stable "xed points shown in Figures 4 and
6 respectively.

7. CONCLUSIONS

The dynamics of a rigid rotor suspended by active magnetic bearings are investigated in
the neighborhood of the double-degeneracy bifurcation point, by using center manifold
theory and normal-form method. These methods can reduce the dynamics to a simpler form
while capturing the essentials of dynamical behavior of the original system.

The rotor}AMB system exhibits complicated nonlinear behavior. For the vibrations in
the vertical direction, the autonomous system reveals the existence of saddle node, saddle
connection and Hopf bifurcations by local bifurcation analyses. The non-autonomous
system shows the existence of transversal intersection of the homoclinic orbit by the
Figure 9. Time histories of stable periodic solutions of the original system (9): (a) The motion in the vertical
direction for f"0)005, (b) the motion in the horizontal direction for f"0)01.
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Melnikov analysis. For the vibrations in horizontal directions, the types of zero solution for
the autonomous system are discussed. Finally, to verify the analytical results, numerical
simulations are performed.
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APPENDIX A

The non-linear terms, the time-periodic perturbation terms, and the coe$cients for
equation (12) are shown below:
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is a matrix composed of generalized eigenvectors of matrix (10).

APPENDIX B
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